
PORTABLE INFERENCE ENGINE:
An Extended CLIPS for Real-Time Production S y s t e m s

Thach Le & Peter Homeier
The Aerospace Corporation

Abs t rac t

The present CLIPS (C-Language Integrated Production
System) architecture has not been optimized to deal with the
constraints of real-time production systems. Matching in
CLIPS is based on the Rete Net algorithm, whose assumption of
working memory stability might fail to be satisfied in a
system subject to real-time dataflow. Further, the CLIPS
forward-chaining control mechanism with a predefined
conflict resolution strategy may not effectively focus the
system's attention on situation-dependent current priorities,
or appropriately address different kinds of knowledge which
might appear in a given application. Portable Inference
Engine (PIE) is a production system architecture based on
CLIPS which attempts to create a more general tool while
addressing the problems of real-time expert systems.
Features of the PIE design include a modular knowledge base, a
modified Rete Net algorithm, a bi-directional control strategy,
and multiple user-defined conflict resolution strategies. This
paper will analyze the problems associated with real-time
applications, and explain how the PIE architecture addresses
these problems.

1. In t roduc t ion

Expert system technology has been successfully applied to a
number of practical applications 111. As this technology
becomes more widely used and starts to address more
complicated real world problems, issues of portability and
accommodation of real-time data will become more significant.

The ability to handle real-time data will automate processes
and remove the human dependency for some cognitive
preprocessing of inputs. For example, a real-time satellite
diagnosis expert system, instead of asking the operator to
analyze satellite telemetry data, will take in the raw
telemetry data directly and extract the needed information.
This capability is important, especially in a situation where
the amount of real-time data precludes exhaustive human
preprocessing. This situation exists in many aerospace
applications.

CLIPS, an OPS5-like (Official Production System) production
system written in the C language by NASA, is an excellent
delivery vehicle because of its portability. However, it was
not designed for real-time systems. PIE (Portable Inference
Engine) is a production system based on CLIPS which attempts
to avoid degradation in performance when the system is
subject to real-lime dataflow and also supports a more
explicit control mechanism.

In part two and three of this paper, we will briefly review a
typical production architecture as exemplified by CLIPS and
discuss the problems which arise in real-time systems when
employing this type of architecture. In part four and five, we
describe the PIE architecture, design issues, and how this
architecture accommodates these problems. PIE is an on-going
project, and its architecture is currently being implemented
for embedded applications.

2. CLIPS & Production Systems Architecture

A production system is a typical rule-based system. It consists
of a knowledge base and an inference engine. The problem
state, contained in a data structure called working memory, is
represented by facts. These facts may be created during the
problem-solving process, either through rule execution or
via the external environment. The knowledge base, which
resides in a data structure called production memory, contains
rules of the form "IF antecedent THEN consequent". Usually the
antecedent is a set of patterns representing the rule's
conditions, and the consequent represents conclusions or
actions.

Production systems may be data-driven, goal-driven, or some
combination of the two. CLIPS' behavior rests on the frequent
re-evaluation of the problem state (represented by the
current memory elements in the working memory), rather
than on any static control structure of the program.
Therefore, CLIPS falls into the class of data-driven production
systems.

A production system is usually described in terms of
recognize/act cycles, which may be divided into three separate
processes:

1. Matching: Match a set of existing facts in working memory,
which represents the current problem state, against all
available rules. Rules whose conditions are satisfied are called
instantiated. The set of instantiated rules at any cycle is called
the conflict set. The matching process updates the conflict set
at each cycle.

2. Conflict resolution: Select a single rule from the conflict set
based on some criteria, which could be (as in the CLIPS case)
user-predefined priority of rules, the recency of working
memory elements, the number and complexity in rules'
patterns.

3. Execution: Carry out the actions specified on the Right Hand
Side of the selected rule. This could affect the content of the
working memory (change the problem state).

The production system performs this recognize/act cycle

187

repeatedly until encountering an empty conflict set or a halt
action. The production system as a model of computation
provides a powerrui w i t e x t within which large, ill-
structured problems may be described [2].

3. Real-time Issues

The term "real-time" is not easily defined. It is usually
associated with fast response. A more precise definition is a
system which has guaranteed response time for a defined class
of events. In general, the design of a real-time system
involves an integrated hardwarelsoftware approach, with
careful prioritization of competing service requests. A more
limited definition for real-time is adopted here. For
production systems, we define a real-time system as one
where efficiency is a primary design concern, which allows
the generation of working memory elements from on-line
inputs, and which has the capability for conflict resolution
based on dynamic prioritization.

In the following sections, the real-time issues that are related
to the performance of CLIPS are discussed. When the system is
subject to real-time dataflow, two main sources of deficiency
are identified: the control mechanism and the matching
process.

3.1 Control

CLIPS provides an implicit control mechanism, built-in to the
production system to govern the direction of the inference
engine. This control algorithm is specified in the conflict
resolution strategy. The CLIPS conflict resolution approach is
to select a rule from the conflict set according to its priority,
the recency of the working memory elements that match the
rule conditions, and the specificity of the conditions
(measured by the number of tests performed). In addition,
rules that have previously fired will not be fired again on the
same facts or working memory elements.

To exploit the full power of the CLIPS language, the application
programs should be data-driven. The course of execution, or
the sequence of rule firings, should be sensitive to the
characteristics of the data. Such systems, where the direction
of problem-solving is from facts toward goals, are
characterized as having a forward-chaining control strategy.
Other systems might use a backward-chaining, or goal-
driven, control strategy, where the direction is from goals
toward facts.

For a given search space, the best direction of reasoning is to
move in the direction of less alternatives to minimize
backtracking, a process of returning to the parent search node
to explore other alternatives if the current search node is not
satisfied [4]. Hence, the decision to use either forward-
chaining or backward-chaining is dependent on the structure
of the search space [SI. However, many realistic problems do
not have a simply structured search space. For such problems,
an efficient reasoning strategy will be bi-directional (i.e.,
combining both backward- and forward-chaining).

A bi-directional control strategy, beside enhancing the
searching process performance, is also useful in expressing
the way of human experts do problem solving [3]. He or she
often alters the line of reasoning and sets up different
hypotheses, or goals, if a particular fact is observed.

A problem with a predefined conflict resolution strategy is
that its algorithm is not appropriate for all applications.
Different applications or different parts of the same

application might require different controi knowledge specific
to their domains. For example, many app ications select rules
based on confidence factors, or perhaps some rule-of-thumb
provided by an expert. Such knowledge has to be embedded
within rules, whereas the appropriate place is the conflict
resolution. The code as a result will be harder to understand.
There are also performance penalties. The system, instead of
taking one recognize/act cycle to select the right rule, has to
perform a few recognizelact cycles to come up with the same
result. In time-critical situations, explicit control may be
needed to quickly resolve conflict.

In building a large expert system, one may encounter many
problems that require various control techniques to keep the
system's performance efficient. As a real-time production
system language, PIE must fulfil this requirement.

3.2 Matching

Matching in production systems is the process of collecting a
set of rules, the so called conflict set, that have their
conditions satisfied by the current problem state. This process
takes about 90% of a recognizelact cycle [6]; therefore, the
performance of the matching algorithm is crucial to the
overall performance of expert systems.

CLIPS uses the Rete algorithm for matching. Rete is known to
be the most efficient matching algorithm for many patterns to
many objects [7]. It is implemented in several popular expert
system shells [SI. One major assumption that contributes to
Rete's efficiency is the assumption that the problem state
changes slowly. This assumption is valid for many systems
where the problem state is changed only by the execution of
rules. Since each rule is usually small, its effects on the
problem state should also be small. The Rete match algorithm
capitalizes on this observation by saving the previous cycle's
matching information, and only updating the matches that have
changed. However, in a real-time situation, the problem state
could be changed, possibly massively, by the external
environment. This violates the Rete Net's assumption, and Rete
should not be used in such cases [SI.

As mentioned before, some degree of backward chaining is
often incorporated into a forward-chaining system. In this
case, the resulting system behaves as if it only focuses its
attention on the most recent goal; but in reality, at the
underlying level, the system still spends its computational
resources matching all rules, which includes many that are
not relevant to the current goal. For example, if the current
task of an automobile diagnosis system is to check out, a
problem with the battery, it should not devote much of its
computing resources to match rules related to incoming data
from the engine.

4. PIE

PIE is a production system based on CLIPS with architectural
modifications to increase applicability to real-time systems
and to provide enhanced production system capabilities.

4.1 Design Issues

As seen above, the potential unsuitability of CLIPS as a
language for building real-time expert systems results from
the built-in control mechanism, and from assumptions of the
Rete matching algorithm. In order to overcome these

188

shortcomings, PIE has two requirements. First, the matching
algorithm should be sensitive to the changed data that are
relevant to the current task being solved, but not to the total
amount of changed data. Second, the control mechanism has to
be more explicit and flexible enough to accommodate different
kinds of knowledge which might appear in a single application.

The primary architectural features of PIE which differ from
CLIPS are a modular knowledge base, a modified Rete match
algorithm, a bi-directional control strategy, and multiple
user-detined conllict resoiuiion sii awyies. I ne ~uriuwiriy
section will detail these features.

4.2 Architecture

Beside rules, PIE has two other data structures, called
modules and goals. A module is a set of rules that are grouped
together based on their functionality or any other convenient
criteria that the programmer defines. A goal is a set of
modules that defines a particular task to be achieved. A module
could belong to more than one goal; in this way, multiple
definition of a set of rules that belong to more than one goal can
be avoided.

At any time, there will only be one active goal. Only the active
goal's rules are to be considered in the current recognize/act
cycle. Corresponding to this set of active rules is a set of
active working memory elements which are defined in the
active rules' conditions. Matching has to be done between the
active rules and the active working memory elements only;
other rules and working memory elements will be ignored as
long as they remain passive.

A rule, once selected to fire, could activate a new goal or
deactivate the current goal. Initially, a top-level goal is
activated. If a new goal X is activated by a rule in the top-
level, then X is said to be a child of the top-level goal, and the
top-level goal is said to be a parent of X. When activated, a
goal's rules become active and its parent's rules become
passive. When deactivated, a goal's parent rules will become
active.

Associated with each module is a conflict resolution strategy
that can be defined either by the programmer or by a default
strategy. Modules included in the same goal must share the
same conflict resolution strategy. The conflict resolution is
defined in a procedural language (C), and can access system
information such as number of instantiations, rule priority,
recency factor, number of tests, condition patterns of rules,
etc.

The system at the highest level is a goal tree that behaves like
a goal-drivenlbackward-chaining system. At the goal level, it
behaves like a purely data-driven/forward-chaining system
with a user-defined conflict resolution strategy. With this
architecture, it is possible to build any level of integration of
forward-chaining and backward-chaining (See figure 1). For
example, a purely forward-chaining system, such as CLIPS, is
a PIE with a single goal. A purely backward-chaining system
is a goal tree in which each goal contains rules to invoke
subgoals, except for the leaf goals of the goal tree which
contains rules that match to facts.

The Rete Match algorithm compiles all rules in production
memory into a dataflow graph called the Rete Net [7]. The
mdiching intormation is saved in each node of the graph. For

0 Rule -
Calling a new goal

0 Goal

Figure 1 : Forward Chaining and Backward Chaining in PIE

189

ORIGINAL PAGE IS
OF POOR QUALrrV

CONTROLLER Goal +

PIE, Rete is modified so that at each recognizelact cycle, it
only updates a partial net related to rules belonging to the
current active goal, instead of updating llw whole net. A
controller is added to the Rete algorithm to k t , - track of the
relationship among rules, modules, and goals. During the
course of execution there usually are many goals to be
activated and deactivated. The controller's function is to turn
on the appropriate nodes to be involved in the malching for the
current active goal and turn off those of the deactivated goal
(sen finiiro W

I I I L .-.-,...:-.-, ::.-.fa of an inactive qoal will Overwi : , I I> nIrj,;r
T

0 passive node

data but will not participate in the matching process until the
goal is activated. If older data are to be saved in time order for
some later use, the corresponding patterns created have to
include the time index defined by programmers.

PIE is an on-going project. The major effort has been to
understand the implementation of Rete algorithm in CLIPS and
to build a controller for Rete. The user-defined conflict
resolution strategies written in the C language will be
compiled and called appropriately with the activation of
corre: ponding goals. Other work will be to enhance the parser
to rec3gnize modules, goals, activation, deactivation, etc.

1
Patterns

RETE Net

Rules 1
Modules

Figure 2: Controller For Rete Match Algorithm

5. Advantages of the PIE Architecture

As stated previously, modularity and the concept of an active
rule set decreases the magnitude of the matching problem,
permitting use of the Rete match algorithm in a rapidly
changing problem state. Each goal of a goal tree might associate
with a number of on-line inputs, so the cost of matching for
each goal over a recognizelact cycle is proportional to this
number of inputs. During the course of execution, the system
might explore only part of the goal tree before the solution is
found; by focusing the matching process on the currently
active goal, the system computing resources are not spent on
rule matching for goals never explored.

In addition, supporting modularity at the language level strips
away much of the bookkeeping usually needed at the
programming level to achieve the same purpose. The result is
clearer, easier to understand programs, assisting debugging
and maintenance.

Large expert systems also benefit from modularity. Because of
the recursive nature of PIE, where each goal can be thought as

a PIE system by itself, a problem can be broken down into
subproblems or goals, then can be tackled independently. On
the other hand, one PIE system can be integrated into another
PIE system as a new goal at any appropriate level of the goal
tree.

The integrated forward- and backward-chaining control
strategy of PIE optimizes the search process of many realistic
problems whose search space does not directly support either
a simple forward-chaining or a simple backward-chaining
strategy. Simulated backward-chaining is no longer required.
A programmer can look at the search space structure of his or
her problem and decide on the appropriate strategies for
different portions of the search space.

The computational cost of a production system is due to two
elements: the rule application cost and the control costs. In
figure 3, the cost of rule application is high if the level of
"informedness" (i.e., encoded knowledge) of the control
strategy is low, and vice versa [4]. With the availability of
user-defined conflict resolution strategies, programmers
determine the right level of informedness for the control
strategy. This will optimize the overall computational cost of

190

I

\ /\controi
strategy cost

application cost

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

COCl P LETE 01
0 "in formedness"

Figure 3: Computational Cost of AI Production Systems 141.

the production system while reducing the obscurity of control
knowledge embedded in the rule set. User-defined conflict
resolution alsn helps to preselve the data-driven or the goal-
driven nature of rules.

From the design of PIE architecture, the predicted
performance of PIE and of CLIPS as functions of the amount of
incoming data is shown in the figure 4. If there is no incoming
external data, the performance of PIE is likely to be lower

than CLIPS due to additional overhead. As the amount of
incoming data increases, CLIPS performance will degrade
because of the increasingly invalid assumption used in the Rete
matching algorithm. PIE performance is expected to degrade
more slowly because of its insensitivity to the total amount of
incoming data. The degradation of PIE performance depends
mainly on the amount of incoming data associated with
activated goals. The programmers have the flexibility to
improve the performance by designing the system so that this
number can be reduced to as much as possible.

Amount of incoming data

Figure 4: The predicted relative preformance of PIE and CLIPS vs the amount of incoming data
3&

191

6. Conclusion References

A PIE architecture has been defined based on extending CLIPS
to accommodate morliilar. hierarchical data structures. The
concept of an active rule set and associated working memory
subset was introduced to "focus the production system
attention". The resultant architecture provides programmers
with more flexibility in defining the control strategy of the
inference engine. This structure appears promising for
systems with real-time constraints, and provides a clear
delineation of the control structure from the rule base. This
architecture is currently being implemented for embedded
applications.

Some applications might have requirements that exceed the
capability of PIE in a sequential processing environment.
Performance could be improved by use of parallel computing.
PIE modularity and independence of control for each goal seem
to lend PIE to a macro-level of parallelism, permitting
partitioning and implementation on a parallel architecture.

Other areas of interest include extension to temporal
reasoning [lo], debugging environments for PIE-like
architectures, and integration of the knowledge base with the
more conventional database structures.

Acknowledgements

The authors would like to thank Dr. Charlie Crummer, Dr.
Russ Abbott. and Dr. Jim Hamilton who made many valuable
comments towards this paper.

1 .

2.

3.

4.

5.

6.

7.

8.

9.

10.

Michie, D., "Expert Systems," The Computer Journal,
VOI. 23, 1980, p. 369-376.

Brownston, L.. Farrell, R., Kant, E., and Martin, N.,
Programming Expert Systems in OPS5, Addison Wesley
Publishing Company, 1985.

Geogeff, M. and Bonollo, U., "Procedural Production
Systems," Proceeding of the Eighth International Joint
Conference on Artificial Intelligence, vol. 1, 8-1 2 Aug
1983, Karlsruhe, West Germany, p. 151-157.

Nilsson, N., Principles of Artificial Intelligence, Tioga
Publishing Company, Palo Alto, California, 1980.

Winston, P., Artificial Intelligence, Second Edition,
Addison Wesley Publishing Company, Jul 1984.

Gupta A., "Parallelism in Production Systems: The
Sources and the Expected Speed Up in Expert Systems
and Their Applications," Fifth International Workshop
Agence de I'lnformatique. Avignon, France, 1985, p.
26-57.

Forgy, C. and Shepard, S.. "Rete: a Fast Match
Algorithm," AI Expert, Jan 1987, p. 34-40.

Mettry, W., "An Assessment of Tools for Build Large
Knowledge-Base Systems", AI Magazine, Winter 1987,

Forgy, C., "Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem,"
Artificial Intelligence, vol. 19, 1982, p. 17-37.

Laffey, T., Cox, P., Schmidt, J., Kao, S., and Read, J.,
"Real-Time Knowledge-Based Systems," AI Magazine,
Spring 1988. p. 27-45.

p. 81-89.

192

